Entropic Optimal Transport and Wasserstein Barycenters in Random Graphs

Nicolas Keriven

CNRS, Gipsa-lab, IRISA

Joint work with Marc Theveneau
(Ecole polytechnique)
gipsa-lab

(Optimal) Transport in Graphs

Optimal Transport (OT): "optimal" way to transport "mass" between several locations. Defines a (family of) metric(s) between probability distributions.

(Optimal) Transport in Graphs

Optimal Transport (OT): "optimal" way to transport "mass" between several locations. Defines a (family of) metric(s) between probability distributions.

On "graphs"?

- Usually transporting mass along the edges

(Optimal) Transport in Graphs

Optimal Transport (OT): "optimal" way to transport "mass" between several locations. Defines a (family of) metric(s) between probability distributions.

On "graphs"?

- Usually transporting mass along the edges
- Interpretable metrics between groups of (weighted) nodes are also interesting
- Non-existing edges can be inferred (ie, nodes are "close" in some sense)

(Optimal) Transport in Graphs

Optimal Transport (OT): "optimal" way to transport "mass" between several locations. Defines a (family of) metric(s) between probability distributions.

On "graphs"?

- Usually transporting mass along the edges
- Interpretable metrics between groups of (weighted) nodes are also interesting
- Non-existing edges can be inferred (ie, nodes are "close" in some sense)
- Here, target nodes are given (user- or algorithm-chosen)

(Optimal) Transport in Graphs

(Optimal) Transport in Graphs

- How to transport stuff on a road/computer/etc network...?

(Optimal) Transport in Graphs

- How to transport stuff on a road/computer/etc network...?
- How different two groups of people are in a social network? (w.r.t. unobserved preferences)

(Optimal) Transport in Graphs

- How to transport stuff on a road/computer/etc network...?
- How different two groups of people are in a social network? (w.r.t. unobserved preferences)
- How "far" apart are different regions of a manifold? (w.r.t. geodesic distance)

(Optimal) Transport in Graphs

- How to transport stuff on a road/computer/etc network...?
- How different two groups of people are in a social network? (w.r.t. unobserved preferences)
- How "far" apart are different regions of a manifold? (w.r.t. geodesic distance)
- What is a good criterion to evaluate the "quality" of clustering algorithms?

Entropic OT ... in random graphs

Distributions Cost Matrix

$$
\alpha \in \Delta_{n}^{+} \quad C \in \mathbb{R}_{+}^{n \times m}
$$

Entropic OT... in random graphs

Distributions	Cost Matrix	$\left\{x_{1}, \ldots, x_{n}\right\}$
$\alpha \in \Delta_{n}^{+}$	$C \in \mathbb{R}_{+}^{n \times m}$	$\left\{x_{n+1}, \ldots, x_{n+m}\right\}$
$\beta \in \Delta_{m}^{+}$		$C=\left[c\left(x_{i}, x_{n+j}\right)\right]_{i j}$

Entropic OT... in random graphs

Distributions	Cost Matrix	$\left\{x_{1}, \ldots, x_{n}\right\}$
$\alpha \in \Delta_{n}^{+}$	$C \in \mathbb{R}_{+}^{n \times m}$	$\left\{x_{n+1}, \ldots, x_{n+m}\right\}$
$\beta \in \Delta_{m}^{+}$		$C=\left[c\left(x_{i}, x_{n+j}\right)\right]_{i j}$

Entropic-regularized OT: [Cuturi 2013]
$\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)=\min _{P \in \Pi(\alpha, \beta)}\langle C, P\rangle+\epsilon K L(P \mid \alpha \otimes \beta)$
NB: Sinkhorn's algorithm only uses $\quad K=e^{-C / \epsilon}$

Entropic OT ... in random graphs

Distributions	Cost Matrix	$\left\{x_{1}, \ldots, x_{n}\right\}$
$\alpha \in \Delta_{n}^{+}$	$C \in \mathbb{R}_{+}^{n \times m}$	$\left\{x_{n+1}, \ldots, x_{n+m}\right\}$
$\beta \in \Delta_{m}^{+}$		$C=\left[c\left(x_{i}, x_{n+j}\right)\right]_{i j}$

Random graph/edges

$$
a_{i j} \sim \operatorname{Ber}\left(w_{n}\left(x_{i}, x_{j}\right)\right)
$$

Entropic-regularized OT: [Cuturi 2013]

$$
\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)=\min _{P \in \Pi(\alpha, \beta)}\langle C, P\rangle+\epsilon K L(P \mid \alpha \otimes \beta)
$$

$$
\text { NB: Sinkhorn's algorithm only uses } \quad K=e^{-C / \epsilon}
$$

Entropic OT ... in random graphs

Distributions	Cost Matrix	$\left\{x_{1}, \ldots, x_{n}\right\}$
$\alpha \in \Delta_{n}^{+}$	$C \in \mathbb{R}_{+}^{n \times m}$	$\left\{x_{n+1}, \ldots, x_{n+m}\right\}$
$\beta \in \Delta_{m}^{+}$		$C=\left[c\left(x_{i}, x_{n+j}\right)\right]_{i j}$

Random graph/edges

$$
a_{i j} \sim \operatorname{Ber}\left(w_{n}\left(x_{i}, x_{j}\right)\right)
$$

Entropic-regularized OT: [Cuturi 2013]

$$
\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)=\min _{P \in \Pi(\alpha, \beta)}\langle C, P\rangle+\epsilon K L(P \mid \alpha \otimes \beta)
$$

- Estimate \hat{C}

Entropic OT ... in random graphs

Distributions	Cost Matrix	$\left\{x_{1}, \ldots, x_{n}\right\}$
$\alpha \in \Delta_{n}^{+}$	$C \in \mathbb{R}_{+}^{n \times m}$	$\left\{x_{n+1}, \ldots, x_{n+m}\right\}$
$\beta \in \Delta_{m}^{+}$		$C=\left[c\left(x_{i}, x_{n+j}\right)\right]_{i j}$

Outline

(1)
Stability of OT to inexact cost

Application to RG with "local" kernels
(3) Application to RG with "non-local" kernel
(4)

Wasserstein Barycenters (w/ Marc Theveneau)

Stability to inexact cost

Stability to inexact cost matrix?

Immediate: $\forall \epsilon \geq 0 \quad\left|\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)-\mathcal{W}_{\epsilon}^{\hat{C}}(\alpha, \beta)\right| \leq \sup _{P}|\langle P, C-\hat{C}\rangle| \leq\|C-\hat{C}\|_{\infty}$

Stability to inexact cost

Stability to inexact cost matrix?

Immediate: $\forall \epsilon \geq 0 \quad\left|\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)-\mathcal{W}_{\epsilon}^{\hat{C}}(\alpha, \beta)\right| \leq \sup _{P}|\langle P, C-\hat{C}\rangle| \leq\|C-\hat{C}\|_{\infty}$
May not be sufficient! E.g., obviously $\|A-\mathbb{E} A\|_{\infty}$ does not converge...

Stability to inexact cost

Stability to inexact cost matrix?
Immediate: $\forall \epsilon \geq 0 \quad\left|\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)-\mathcal{W}_{\epsilon}^{\hat{C}}(\alpha, \beta)\right| \leq \sup _{P}|\langle P, C-\hat{C}\rangle| \leq\|C-\hat{C}\|_{\infty}$
May not be sufficient! E.g., obviously $\|A-\mathbb{E} A\|_{\infty}$ does not converge...
Theorem (K.): \quad If $\ell \leq C_{i j}, \hat{C}_{i j} \leq L$ and $\alpha_{i} \lesssim \frac{1}{n}, \beta_{j} \lesssim \frac{1}{m}$

$$
\begin{aligned}
& \forall \epsilon>0 \\
& \begin{aligned}
\left|\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)-\mathcal{W}_{\epsilon}^{\hat{C}}(\alpha, \beta)\right| & \lesssim \epsilon e^{(2 L-\ell) / \epsilon} \frac{\left\|e^{-C / \epsilon}-e^{-\hat{C} / \epsilon}\right\|}{\sqrt{n m}} \\
& \lesssim e^{2(L-\ell) / \epsilon} \frac{\|C-\hat{C}\|_{F}}{\sqrt{n m}}
\end{aligned}
\end{aligned}
$$

Stability to inexact cost

Stability to inexact cost matrix?
Immediate: $\forall \epsilon \geq 0 \quad\left|\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)-\mathcal{W}_{\epsilon}^{\hat{C}}(\alpha, \beta)\right| \leq \sup _{P}|\langle P, C-\hat{C}\rangle| \leq\|C-\hat{C}\|_{\infty}$
May not be sufficient! E.g., obviously $\|A-\mathbb{E} A\|_{\infty}$ does not converge...

Theorem (K.): If $\ell \leq C_{i j}, \hat{C}_{i j} \leq L$ and $\alpha_{i} \lesssim \frac{1}{n}, \beta_{j} \lesssim \frac{1}{m}$

$$
\begin{aligned}
& \forall \epsilon>0 \\
&\left|\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)-\mathcal{W}_{\epsilon}^{\hat{C}}(\alpha, \beta)\right| \lesssim \epsilon e^{(2 L-\ell) / \epsilon} \frac{\left\|e^{-C / \epsilon}-e^{-\hat{C} / \epsilon}\right\|}{\sqrt{n m}} \\
& \lesssim e^{2(L-\ell) / \epsilon} \frac{\|C-\hat{C}\|_{F}}{\sqrt{n m}}
\end{aligned}
$$

- Invariant to translating C, \hat{C}
- Exponential in ϵ
- First bound stronger, second bound more "usable"
- Proof: classical, bound the dual potentials

Stability of OT plan

Using strong convexity, we can obtain stability of the OT plan:

Stability of OT plan

Using strong convexity, we can obtain stability of the OT plan:
Theorem (K.): If $\ell \leq C_{i j}, \hat{C}_{i j} \leq L$ and $\alpha_{i} \lesssim \frac{1}{n}, \beta_{j} \lesssim \frac{1}{m}$

$$
\begin{aligned}
& \forall \epsilon>0 \\
& \operatorname{KL}\left(P^{C} \mid P^{\hat{C}}\right) \lesssim \epsilon^{-1} e^{2(L-\ell) / \epsilon} \frac{\|C-\hat{C}\|_{F}}{\sqrt{n m}}+e^{(4 L-7 \ell / 2) / \epsilon} \sqrt{\frac{\left\|e^{-C / \epsilon}-e^{-\hat{C} / \epsilon}\right\|}{\sqrt{n m}}}
\end{aligned}
$$

Stability of OT plan

Using strong convexity, we can obtain stability of the OT plan:
Theorem (K.): If $\ell \leq C_{i j}, \hat{C}_{i j} \leq L$ and $\alpha_{i} \lesssim \frac{1}{n}, \beta_{j} \lesssim \frac{1}{m}$

$$
\begin{aligned}
& \forall \epsilon>0 \\
& \mathrm{KL}\left(P^{C} \mid P^{\hat{C}}\right) \lesssim \epsilon^{-1} e^{2(L-\ell) / \epsilon} \frac{\|C-\hat{C}\|_{F}}{\sqrt{n m}}+e^{(4 L-7 \ell / 2) / \epsilon} \sqrt{\frac{\left\|e^{-C / \epsilon}-e^{-\hat{C} / \epsilon}\right\|}{\sqrt{n m}}}
\end{aligned}
$$

- Still invariant by cost shift
- Includes both norms
- Slower rate than convergence of the metric itself

Outline

(1)
Stability of OT to inexact cost

Application to RG with "local" kernels
(3) Application to RG with "non-local" kernel

Wasserstein Barycenters (w/ Marc Theveneau)

Geodesics on manifolds

RGs with "local kernels": close nodes are connected, radius decreases when \#nodes increases
Known: weighted shortest paths converge to geodesic distance [Bernstein et al. 2000]

Geodesics on manifolds

RGs with "local kernels": close nodes are connected, radius decreases when \#nodes increases

- k-manifold $\mathcal{M}_{k} \subset \mathbb{R}^{d}$ with geo. dist. $d_{\mathcal{M}}(x, y)$
- Fixed $\left\{x_{1}, \ldots, x_{n+m}\right\} \subset \mathcal{M}_{k}$
- Nodes $\left\{x_{n+m+1}, \ldots, x_{N}\right\} \stackrel{i i d}{\sim} \nu$ with $N \rightarrow \infty$
- Kernel $w_{N}(x, y)=1_{\|x-y\| \leq h_{N}}$ with $\frac{\log \left(1 / h_{N}\right)}{N h_{N}^{k}} \rightarrow 0$

Known: weighted shortest paths converge to geodesic distance [Bernstein et al. 2000]

Geodesics on manifolds

RGs with "local kernels": close nodes are connected, radius decreases when \#nodes increases

- k-manifold $\mathcal{M}_{k} \subset \mathbb{R}^{d}$ with geo. dist. $d_{\mathcal{M}}(x, y)$
- Fixed $\left\{x_{1}, \ldots, x_{n+m}\right\} \subset \mathcal{M}_{k}$
- Nodes $\left\{x_{n+m+1}, \ldots, x_{N}\right\} \stackrel{i i d}{\sim} \nu$ with $N \rightarrow \infty$
- Kernel $w_{N}(x, y)=1_{\|x-y\| \leq h_{N}}$ with $\frac{\log \left(1 / h_{N}\right)}{N h_{N}^{k}} \rightarrow 0$

Known: weighted shortest paths converge to geodesic distance [Bernstein et al. 2000]

Theorem (K.): if ν has a lower-bounded density, whp

$$
h_{N} \mathrm{SP}\left(v_{i}, v_{n+j}\right)=d_{\mathcal{M}}\left(x_{i}, x_{n+j}\right)+\mathcal{O}\left(\left(\frac{\log 1 / h_{N}}{N h_{N}^{k}}\right)^{\frac{1}{k}}\right)
$$

Geodesics on manifolds

RGs with "local kernels": close nodes are connected, radius decreases when \#nodes increases

- k-manifold $\mathcal{M}_{k} \subset \mathbb{R}^{d}$ with geo. dist. $d_{\mathcal{M}}(x, y)$
- Fixed $\left\{x_{1}, \ldots, x_{n+m}\right\} \subset \mathcal{M}_{k}$
- Nodes $\left\{x_{n+m+1}, \ldots, x_{N}\right\} \stackrel{i i d}{\sim} \nu$ with $N \rightarrow \infty$
- Kernel $w_{N}(x, y)=1_{\|x-y\| \leq h_{N}}$ with $\frac{\log \left(1 / h_{N}\right)}{N h_{N}^{k}} \rightarrow 0$

Known: weighted shortest paths converge to geodesic distance [Bernstein et al. 2000]

Corollary

$$
C_{i j}=f\left(d_{\mathcal{M}}\left(x_{i}, x_{n+j}\right)\right)
$$

leads to

$$
\left\|\hat{C}_{\mathrm{SP}}-C\right\|_{\infty} \rightarrow 0
$$

Theorem (K.): if ν has a lower-bounded density, whp

$$
h_{N} \mathrm{SP}\left(v_{i}, v_{n+j}\right)=d_{\mathcal{M}}\left(x_{i}, x_{n+j}\right)+\mathcal{O}\left(\left(\frac{\log 1 / h_{N}}{N h_{N}^{k}}\right)^{\frac{1}{k}}\right)
$$

Illustration

Convergence of shortest path

MDS embedding

Convergence rates

Outline

(1)
Stability of OT to inexact cost

Application to RG with "local" kernels

Application to RG with "non-local" kernel

USVT estimator

RGs with "nonlocal kernels": fixed kernel, multiplying factor decreases when \#nodes increases

- Nodes $\left\{x_{1}, \ldots, x_{n+m}\right\}$
with $n \sim m \rightarrow \infty$
- Kernel $w_{n}(x, y)=\rho_{n} w(x, y)$
with $\rho_{n} \gtrsim(\log n) / n$
and psd kernel
- Cost $c(x, y)=f(w(x, y))$
with Lipschitz f

USVT estimator

RGs with "nonlocal kernels": fixed kernel, multiplying factor decreases when \#nodes increases

- Nodes $\left\{x_{1}, \ldots, x_{n+m}\right\}$
with $n \sim m \rightarrow \infty$
- Kernel $w_{n}(x, y)=\rho_{n} w(x, y)$
with $\rho_{n} \gtrsim(\log n) / n$
and psd kernel
- Cost $c(x, y)=f(w(x, y))$
with Lipschitz f
[Lei\&Rinaldo 2015]
Pbm: $\frac{1}{n}\left\|A / \rho_{n}-W\right\| \lesssim\left(n \rho_{n}\right)^{-\frac{1}{2}}$
but $\quad \frac{1}{n}\left\|A / \rho_{n}-W\right\|_{F} \nrightarrow 0$

USVT estimator

RGs with "nonlocal kernels": fixed kernel, multiplying factor decreases when \#nodes increases

- Nodes $\left\{x_{1}, \ldots, x_{n+m}\right\}$
with $n \sim m \rightarrow \infty$
- Kernel $w_{n}(x, y)=\rho_{n} w(x, y)$
with $\rho_{n} \gtrsim(\log n) / n$
and psd kernel
- Cost $c(x, y)=f(w(x, y))$
with Lipschitz f
[Lei\&Rinaldo 2015]
Pbm: $\frac{1}{n}\left\|A / \rho_{n}-W\right\| \lesssim\left(n \rho_{n}\right)^{-\frac{1}{2}}$
but $\quad \frac{1}{n}\left\|A / \rho_{n}-W\right\|_{F} \nrightarrow 0$

USVT estimator

RGs with "nonlocal kernels": fixed kernel, multiplying factor decreases when \#nodes increases

- Nodes $\left\{x_{1}, \ldots, x_{n+m}\right\}$
with $n \sim m \rightarrow \infty$
- Kernel $w_{n}(x, y)=\rho_{n} w(x, y)$
with $\rho_{n} \gtrsim(\log n) / n$
and psd kernel
- Cost $c(x, y)=f(w(x, y))$
with Lipschitz f
[Lei\&Rinaldo 2015]
Pbm: $\frac{1}{n}\left\|A / \rho_{n}-W\right\| \lesssim\left(n \rho_{n}\right)^{-\frac{1}{2}}$
but $\quad \frac{1}{n}\left\|A / \rho_{n}-W\right\|_{F} \nrightarrow 0$

Universal Singular Value Thresholding (USVT)

- Diagonalize $A=\sum_{i} \sigma_{i} a_{i} a_{i}^{\top}$

$$
\hat{W}_{\gamma}=\operatorname{cut}_{\left[w_{\min }, w_{\max }\right]}\left(\rho_{n}^{-1} \sum_{\sigma_{i} \geq \gamma \sqrt{\rho_{n} n}} \sigma_{i} a_{i} a_{i}^{\top}\right)
$$

Theorem (K.): for all $r>0$, there is γ_{r} such that, with proba $1-n^{-r}, \quad \frac{1}{n}\left\|\hat{W}_{\gamma_{r}}-W\right\|_{F} \lesssim\left(n \rho_{n}\right)^{-1 / 4}$

USVT estimator

RGs with "nonlocal kernels": fixed kernel, multiplying factor decreases when \#nodes increases

- Nodes $\left\{x_{1}, \ldots, x_{n+m}\right\}$
with $n \sim m \rightarrow \infty$
- Kernel $w_{n}(x, y)=\rho_{n} w(x, y)$
with $\rho_{n} \gtrsim(\log n) / n$ and psd kernel
- Cost $c(x, y)=f(w(x, y))$
with Lipschitz f
[Lei\&Rinaldo 2015]
Pbm: $\frac{1}{n}\left\|A / \rho_{n}-W\right\| \lesssim\left(n \rho_{n}\right)^{-\frac{1}{2}}$
but $\quad \frac{1}{n}\left\|A / \rho_{n}-W\right\|_{F} \nrightarrow 0$

Universal Singular Value Thresholding (USVT)

- Diagonalize $A=\sum_{i} \sigma_{i} a_{i} a_{i}^{\top}$
[Chatterjee 2015]

$$
\hat{W}_{\gamma}=\operatorname{cut}_{\left[w_{\min }, w_{\max }\right]}\left(\rho_{n}^{-1} \sum_{\sigma_{i} \geq \gamma \sqrt{\rho_{n} n}} \sigma_{i} a_{i} a_{i}^{\top}\right)
$$

Theorem (K.): for all $r>0$, there is γ_{r} such that, with proba $1-n^{-r}, \quad \frac{1}{n}\left\|\hat{W}_{\gamma_{r}}-W\right\|_{F} \lesssim\left(n \rho_{n}\right)^{-1 / 4}$

Corollary:

$$
\begin{aligned}
\left|\mathcal{W}_{\epsilon}^{\hat{C}_{\gamma_{r}}}(\alpha, \beta)-\mathcal{W}_{\epsilon}^{C}(\alpha, \beta)\right| & \lesssim e^{2(L-\ell) / \epsilon}\left(\rho_{n} n\right)^{-1 / 4} \\
\operatorname{KL}\left(P^{C} \mid P^{\hat{C}}\right) & \lesssim \epsilon^{-1 / 2} e^{4(L-\ell) / \epsilon}\left(\rho_{n} n\right)^{-1 / 8}
\end{aligned}
$$

"Fast" rate

When $w(x, y)=e^{-\frac{\|x-y\|^{p}}{\sigma}}$, the matrix W is directly the "Sinkhorn" matrix $K=e^{-C / \sigma}$ when $\epsilon=\sigma$ and $c(x, y)=\|x-y\|^{p}$

"Fast" rate

When $w(x, y)=e^{-\frac{\|x-y\|^{p}}{\sigma}}$, the matrix W is directly the "Sinkhorn" matrix $K=e^{-C / \sigma}$ when $\epsilon=\sigma$ and $c(x, y)=\|x-y\|^{p}$

Theorem (K.):

Defining $\quad \mathcal{L}_{\epsilon}^{K}(\alpha, \beta)=\max _{f, g} f^{\top} \alpha+g^{\top} \beta-\epsilon\left(e^{\frac{f}{\epsilon}} \odot \alpha\right)^{\top} K\left(e^{\frac{g}{\epsilon}} \odot \beta\right)+\epsilon$ the dual OT cost with matrix K, whp (plus some bounding conditions on the potentials)

$$
\left|\mathcal{L}_{\sigma}^{A / \rho_{n}}(\alpha, \beta)-\mathcal{W}_{\sigma}^{C}(\alpha, \beta)\right| \lesssim\left(n \rho_{n}\right)^{-1 / 2}
$$

Illustration

Observation, true kernel, USVT, true OT plan, estimated OT plan.

Illustration

Observation, true kernel, USVT, true OT plan, estimated OT plan.

n

Convergence of OT distance.
Dotted: fast estimator

Illustration

Observation, true kernel, USVT, true OT plan, estimated OT plan.

n

Convergence of OT distance. Dotted: fast estimator

Clustering quality: correlation between quality metrics and increasingly noisy clustering

Outline

(1)
Stability of OT to inexact cost

Application to RG with "local" kernels
(3) Application to RG with "non-local" kernel

4
Wasserstein Barycenters (w/ Marc Theveneau)

Entropic Wasserstein Barycenters

S distributions $\quad S$ cost matrices to a common space

$$
\beta_{s} \in \Delta_{m_{s}}^{+} \quad C_{s} \in \mathbb{R}_{+}^{n \times m_{s}}
$$

Entropic Wasserstein Barycenters

S distributions S cost matrices to a common space

$$
\beta_{s} \in \Delta_{m_{s}}^{+} \quad C_{s} \in \mathbb{R}_{+}^{n \times m_{s}}
$$

Wasserstein Barycenters [Agueh Carlier 2011]

Given nonnegative weights $\sum_{s} \lambda_{s}=1$
$\alpha^{C}=\arg \min _{\alpha \in \Delta_{n}^{+}} B^{C}(\alpha)=\sum_{s} \lambda_{s} \mathcal{W}_{\epsilon}^{C_{s}}\left(\alpha, \beta_{s}\right)$
NB: a variant of Sinkhorn's algorithm only uses $K_{s}=e^{-C_{s} / \epsilon}$

WB stability to inexact cost

Immediate: $\quad \forall \epsilon \geq 0 \quad\left|B_{\epsilon}^{C}\left(\alpha_{\epsilon}^{C}\right)-B_{\epsilon}^{\hat{C}}\left(\alpha_{\epsilon}^{\hat{C}}\right)\right| \leq \sum_{s} \lambda_{s}\left\|C_{s}-\hat{C}_{s}\right\|_{\infty}$

WB stability to inexact cost

Immediate: $\quad \forall \epsilon \geq 0 \quad\left|B_{\epsilon}^{C}\left(\alpha_{\epsilon}^{C}\right)-B_{\epsilon}^{\hat{C}}\left(\alpha_{\epsilon}^{\hat{C}}\right)\right| \leq \sum_{s} \lambda_{s}\left\|C_{s}-\hat{C}_{s}\right\|_{\infty}$

We are more interested in the stability of the barycenters α^{C} !

WB stability to inexact cost

Immediate: $\quad \forall \epsilon \geq 0 \quad\left|B_{\epsilon}^{C}\left(\alpha_{\epsilon}^{C}\right)-B_{\epsilon}^{\hat{C}}\left(\alpha_{\epsilon}^{\hat{C}}\right)\right| \leq \sum_{s} \lambda_{s}\left\|C_{s}-\hat{C}_{s}\right\|_{\infty}$
We are more interested in the stability of the barycenters α^{C} !

Theorem (T,K): if $\ell \leq C_{s i j}, \hat{C}_{s i j} \leq L$
$\forall \epsilon>0$
$\left\|\alpha_{\epsilon}^{C}-\alpha_{\epsilon}^{\hat{C}}\right\|_{2}^{2} \lesssim \epsilon e^{3(L-\ell) / \epsilon} \sum_{s} \lambda_{s}\left\|C_{s}-\hat{C}_{s}\right\|_{\infty}$

WB stability to inexact cost

Immediate: $\quad \forall \epsilon \geq 0 \quad\left|B_{\epsilon}^{C}\left(\alpha_{\epsilon}^{C}\right)-B_{\epsilon}^{\hat{C}}\left(\alpha_{\epsilon}^{\hat{C}}\right)\right| \leq \sum_{s} \lambda_{s}\left\|C_{s}-\hat{C}_{s}\right\|_{\infty}$
We are more interested in the stability of the barycenters α^{C} !

Theorem (T,K): if $\ell \leq C_{s i j}, \hat{C}_{s i j} \leq L$ $\forall \epsilon>0$

$$
\left\|\alpha_{\epsilon}^{C}-\alpha_{\epsilon}^{\hat{C}}\right\|_{2}^{2} \lesssim \epsilon e^{3(L-\ell) / \epsilon} \sum_{s} \lambda_{s}\left\|C_{s}-\hat{C}_{s}\right\|_{\infty}
$$

- Invariant to translating C, \hat{C}
- Exponential in ϵ
- Only supremum norm, Frobenius still open
- Proof: classical, bound the dual potentials
- More recent results with different approach: see Chizat 2023

Illustration

Immediately lead to convergence for local kernels on manifolds (non-local still open)

Conclusion

- OT and WB can be done when the cost matrix is not known exactly
- Maybe "reinventing the wheel" a bit, but interesting results in the context of random graphs
- First steps, many outlooks:
- More integrated, data-driven way of estimating the cost?
- WB with non-local kernels
- Other applications?

Keriven N. Entropic Optimal Transport in Random Graphs. arXiv:2201.03949
Theveneau M., Keriven N. Stability of Entropic Wasserstein Barycenters and application to random geometric graphs. arXiv:2210.10535
nkeriven.github.io

