
Entropic Optimal Transport and Wasserstein 
Barycenters in Random Graphs

Nicolas Keriven
CNRS, Gipsa-lab, IRISA

Joint work with Marc Theveneau 
(Ecole polytechnique)



 

(Optimal) Transport in Graphs

1

Optimal Transport (OT): “optimal” way 
to transport “mass” between several 

locations. Defines a (family of) metric(s) 
between probability distributions.



 

(Optimal) Transport in Graphs

1

Optimal Transport (OT): “optimal” way 
to transport “mass” between several 

locations. Defines a (family of) metric(s) 
between probability distributions.

On “graphs”?
● Usually transporting mass along the edges



 

(Optimal) Transport in Graphs

1

Optimal Transport (OT): “optimal” way 
to transport “mass” between several 

locations. Defines a (family of) metric(s) 
between probability distributions.

On “graphs”?
● Usually transporting mass along the edges
● Interpretable metrics between groups of (weighted) nodes 

are also interesting
● Non-existing edges can be inferred (ie, nodes are “close” in some sense)



 

(Optimal) Transport in Graphs

1

Optimal Transport (OT): “optimal” way 
to transport “mass” between several 

locations. Defines a (family of) metric(s) 
between probability distributions.

On “graphs”?
● Usually transporting mass along the edges
● Interpretable metrics between groups of (weighted) nodes 

are also interesting
● Non-existing edges can be inferred (ie, nodes are “close” in some sense)

● Here, target nodes are given (user- or algorithm-chosen)
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● How to transport stuff on a road/computer/etc 
network...?

● How different two groups of people are in a 
social network? (w.r.t. unobserved preferences)

● How “far” apart are different regions of a 
manifold? (w.r.t. geodesic distance)

● What is a good criterion to evaluate the 
“quality” of clustering algorithms?
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Stability to inexact cost matrix?

Immediate:

May not be sufficient! E.g., obviously                     does not converge...

Theorem (K.): ● Invariant to translating
● Exponential in
● First bound stronger, second 

bound more “usable”
● Proof: classical, bound the 

dual potentials        



 

Stability of OT plan

5

Using strong convexity, we can obtain stability of the OT plan:



 

Stability of OT plan

5

If                          and Theorem (K.):

Using strong convexity, we can obtain stability of the OT plan:



 

Stability of OT plan

5

If                          and Theorem (K.):

Using strong convexity, we can obtain stability of the OT plan:

● Still invariant by cost shift
● Includes both norms
● Slower rate than convergence 

of the metric itself
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Known: weighted shortest paths converge to geodesic distance 
[Bernstein et al. 2000]

RGs with “local kernels”: close nodes are connected, radius decreases when #nodes increases

Theorem (K.): if    has a lower-bounded density, whp

Corollary

leads to
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Some numerical 
illustrations...

Convergence of OT plan

Convergence of shortest path

102 103

N

100

101

OT error

‖Ĉ − C‖∞
KL(PC, P Ĉ)

Convergence ratesMDS embedding
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RGs with “nonlocal kernels”: fixed kernel, multiplying factor decreases when #nodes increases
● Nodes               

with
● Kernel             

with                 
and psd kernel

● Cost                
with Lipschitz f

Pbm:

but

[Lei&Rinaldo 2015]

Universal Singular Value Thresholding (USVT)
[Chatterjee 2015]

● Diagonalize

Theorem (K.): for all         , there is     such that, with 
proba            ,

Corollary:
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When                          , the matrix     is directly the “Sinkhorn” matrix 

Theorem (K.):

Defining                                      

the dual OT cost with matrix     , whp 
(plus some bounding conditions 
on the potentials)
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ρ = 1

ρ = n−1/6

ρ = n−1/3 Convergence of OT distance.
Dotted: fast estimator
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n

10−1

ρ = 1

ρ = n−1/6

ρ = n−1/3 Convergence of OT distance.
Dotted: fast estimator

Clustering quality: correlation 
between quality metrics and 
increasingly noisy clustering

Observation, true kernel, USVT, true OT plan, estimated OT plan.
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S distributions S cost matrices to a common space

NB: a variant of Sinkhorn’s algorithm only uses

Wasserstein Barycenters [Agueh Carlier 2011]

Given nonnegative weights
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● Invariant to translating
● Exponential in
● Only supremum norm, Frobenius 

still open
● Proof: classical, bound the dual 

potentials
● More recent results with different 

approach: see Chizat 2023        
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Immediate:

We are more interested in the stability of the barycenters       !

Theorem (T,K):



 

Illustration
Immediately lead to convergence for local 
kernels on manifolds (non-local still open)

102 103

N

2 × 10 2

3 × 10 2

4 × 10 2

Er
ro

r

d=2
d=2 (theory)
d=3
d=3 (theory)
d=5
d=5 (theory)
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Conclusion

nkeriven.github.io
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● OT and WB can be done when the cost matrix is not known exactly
● Maybe “reinventing the wheel” a bit, but interesting results in the context of random graphs
● First steps, many outlooks:

● More integrated, data-driven way of estimating the cost?
● WB with non-local kernels
● Other applications?

Keriven N. Entropic Optimal Transport in Random Graphs. arXiv:2201.03949
Theveneau M., Keriven N. Stability of Entropic Wasserstein Barycenters
and application to random geometric graphs. arXiv:2210.10535 
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